UHN Research Report

Achieving with Partnerships

University Health Network
About Research at University Health Network

<table>
<thead>
<tr>
<th>Total Number of Researchers</th>
<th>465</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Scientists</td>
<td>152</td>
</tr>
<tr>
<td>Scientists</td>
<td>47</td>
</tr>
<tr>
<td>Affiliate Scientists</td>
<td>46</td>
</tr>
<tr>
<td>CRU/CSRC Members</td>
<td>220</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Number of Trainees</th>
<th>881</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fellows</td>
<td>387</td>
</tr>
<tr>
<td>Graduate Students</td>
<td>364</td>
</tr>
<tr>
<td>Other Students</td>
<td>130</td>
</tr>
</tbody>
</table>

| Staff | 1083 |

<table>
<thead>
<tr>
<th>Research Space</th>
<th>480,000 sq ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publications</td>
<td>1191</td>
</tr>
<tr>
<td>Total Research Funding</td>
<td>$160,700,000</td>
</tr>
</tbody>
</table>

Contents

- Welcome 4
- Ontario Cancer Institute 6
- Toronto General Research Institute 8
- Toronto Western Research Institute 10
- Year in Review 12
- Partnerships 14
- New TGRI Director 16
- Toronto Medical Discovery Tower 17
- Breakthroughs in 2004/05 20
- Research Activity 31
- Research Support Services 32
- Funding 34
- Committees 36
- Chairs 38
- International Research Advisory Board 39
Research at University Health Network is built on partnerships.

New research facilities, new research programs, new resources for research and new research staff—all have been achieved through partnerships.

Partners include public and private agencies; donors and foundations; companies; other research organizations such as universities and hospitals; and governments at the municipal, provincial and federal levels.

In these pages UHN salutes its partners.
Welcome to the University Health Network Research Report for 2004/05. This year’s Report has the theme of “Partnership”, and so it is fitting that we are pairing up to introduce this year’s edition.

UHN is a landmark in the Canadian health care system, and UHN Research is the largest hospital-based research enterprise in the country.

As a network of teaching hospitals, research institutes, and other affiliates, University Health Network has from the beginning embraced the concept of partnership. Partnering with other hospitals to streamline care delivery through IT and other strategies. Partnering with stakeholders and care providers in the community. Partnering with our three Foundations for fundraising in a very successful Campaign. Partnering with our staff to implement patient-centred care. Partnering with the University of Toronto and the Toronto Academic Health Sciences Network to fulfill our research and teaching mandates. In these ways and many others, UHN is a prime example of collaboration in action.

In UHN Research, particularly, the list can be extended. Research continues a long tradition of partnering with public funding agencies to explore novel research avenues. Scientific collaboration is also a key ingredient in many UHN research breakthroughs. In the past few years, Research has also built capacity to partner with private sector representatives for commercialization of new technologies and development of innovative new funding mechanisms.

No institution, not even an institution the size of UHN, can do it all alone. In working with partners we build on our strengths and minimize our weaknesses. Together we achieve much more than we could achieve independently.

UHN realized many partnership successes in 2004/05. This Report outlines some of them. Please read on to learn more.

Tom Closson
President and CEO
University Health Network
(2000-2005)

Robert S. Bell,
MD CM, MSc, FRCS, FACS
President and CEO
University Health Network
(2005-)
Research plays a vital role in achieving UHN’s vision of “global impact”—and I am convinced that we will achieve this goal only through partnership.

For Research, global impact means that our basic science discoveries will influence the course of scientific thinking around the world; our translational discoveries will spur the development of new treatments and diagnostic tools; and our clinical discoveries will be adopted world wide, resulting in improved patient outcomes at every level.

We will only achieve this vision by establishing productive partnerships: partnerships with other leading academic institutions, with communities and governments, with the private sector, and with the help of engaged supporters who work with our Foundations to allow researchers to realize their ambitious dreams.

UHN enjoys membership in one of the most vibrant medical research communities in the world—the Toronto Academic Health Sciences Network (TAHSN). Composed of the University of Toronto and 9 research hospitals, TAHSN provides researchers with access to collaborative expertise across the medical disciplines. Major joint initiatives such as the R.S McLaughlin Centre for Molecular Medicine, the Toronto Centre for Phenogenomics, and BioDiscovery Toronto serve to focus research talent drawn from diverse institutions on common research problems.

Another important set of partners are funding agencies and governments. There has been an extraordinary commitment on the part of federal and provincial governments to increase Canadian competitiveness in biomedical research. This has translated into major increases in UHN’s annual research spending.

The ultimate goal of biomedical research is to improve health. Striving to achieve this goal is the foundation of the knowledge-based economic engine. UHN values its relationships with private sector partners whose complementary skills and funding capacity help us to achieve our goals.

Philanthropy also plays a big part in our success. The three UHN Foundations—the Princess Margaret Hospital Foundation, Toronto General & Western Hospital Foundation and Arthritis & Autoimmunity Research Centre Foundation—help fund core research programs and provide the base upon which UHN investigators were able to raise more than $160M in total research funding last year.

Most importantly, UHN Research’s success rests on the success of our many internal “partners”: our scientists and clinician-scientists, our technical and support staff, and our students and fellows. They are the creative force that is changing the face of health care.

Christopher J. Paige, PhD
Vice President, Research
University Health Network
Ontario Cancer Institute

Research Space 222,000 sq ft
Publications 402
Total External Funding $65,392,000

Staff and Students

<table>
<thead>
<tr>
<th>Category</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Researchers</td>
<td>146</td>
</tr>
<tr>
<td>Senior Scientists</td>
<td>44</td>
</tr>
<tr>
<td>Scientists</td>
<td>16</td>
</tr>
<tr>
<td>Affiliate Scientists</td>
<td>3</td>
</tr>
<tr>
<td>CRU Members</td>
<td>83</td>
</tr>
<tr>
<td>Total Number of Trainees</td>
<td>387</td>
</tr>
<tr>
<td>Fellows</td>
<td>164</td>
</tr>
<tr>
<td>Graduate Students</td>
<td>184</td>
</tr>
<tr>
<td>Other Students</td>
<td>39</td>
</tr>
<tr>
<td>Staff</td>
<td>455</td>
</tr>
</tbody>
</table>

Applied Molecular Oncology

SENIOR SCIENTISTS
Asa, Sylvia*
Hedley, David *
Hill, Richard
Liu, Fei-Fei*
Miller, Richard
Moore, Malcolm*
Squire, Jeremy*
Tannock, Ian*
Tsao, Ming*

SCIENTISTS
Bristow, Robert*
Done, Susan*
Vallis, Katherine*

AFFILETATE SCIENTIST
Kamel-Reid, Suzanne*

Biophysics & Bioimaging

SENIOR SCIENTISTS
Chakrabarty, Avi
Hunt, John
Jaffray, David
Lepock, James
Sherar, Michael
Vitkin, Alex
Wilson, Brian

SCIENTISTS
Lilge, Lothar
Siewersen, Jeff

Cancer Genomics & Proteomics

SENIOR SCIENTISTS
Arrowsmith, Cheryl
Benchmol, Sam
Gallie, Brenda

Gariépy, Jean
Pai, Emil
Penn, Linda
Privé, Gilbert
Richardson, Christopher
Rose, David

SCIENTISTS
Harrington, Lea
Schimmer, Aaron*
Tillier, Elisabeth

AFFILETATE SCIENTIST
Bradley, Grace

Epidemiology, Statistics & Behavioural Research

SENIOR SCIENTISTS
Benchimol, Sam
Gallie, Brenda

SCIENTISTS
Harrington, Lea
Schimmer, Aaron*
Tillier, Elisabeth

AFFILETATE SCIENTIST
Ritvo, Paul

Signaling Biology

SENIOR SCIENTISTS
Ikura, Mitsu
Khokha, Rama
Manoukian, Armen
Ohashi, Pam
Woodgett, Jim

SCIENTISTS
Cheung, Peter
Hakem, Razq
Jurisica, Igor
Koch, Anne*
OCI includes the Advanced Medical Discovery Institute and The Campbell Family Institute for Breast Cancer Research

*these researchers are also members of the Clinical Research Unit

Research Council

Director
Christopher J. Paige

Division Heads

Applied Molecular Oncology
Fei-Fei Liu

Biophysics & Bioimaging
Brian Wilson

Cancer Genomics & Proteomics
Linda Penn

Epidemiology, Statistics & Behavioural Research
Norman Boyd

Signaling Biology
Mitsu Ikura

Stem Cell & Developmental Biology
Robert Rottapel

Vice President, Research
Christopher J. Paige

Clinical Representatives
Armand Keating
Mary Gospodarowicz
Jonathan Irish

Site Representative
Robert Bell
Toronto General Research Institute

Research Space 153,000 sq ft
Publications 541
Total External Funding $46,623,000

Staff and Students

<table>
<thead>
<tr>
<th>Total Number of Researchers</th>
<th>188</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Scientists</td>
<td>64</td>
</tr>
<tr>
<td>Scientists</td>
<td>22</td>
</tr>
<tr>
<td>Affiliate Scientists</td>
<td>30</td>
</tr>
<tr>
<td>CSRC Members</td>
<td>72</td>
</tr>
<tr>
<td>Total Number of Trainees</td>
<td>327</td>
</tr>
<tr>
<td>Fellows</td>
<td>149</td>
</tr>
<tr>
<td>Graduate Students</td>
<td>119</td>
</tr>
<tr>
<td>Other Students</td>
<td>59</td>
</tr>
<tr>
<td>Staff</td>
<td>435</td>
</tr>
</tbody>
</table>

Behavioural Sciences & Health

SENIOR SCIENTISTS
Devins, Gerald*
Flint, Alastair
Kaplan, Allan
Katz, Joel
Olmsted, Marion
Rodin, Gary*
Stewart, Donna

SCIENTISTS
Carter, Jacqueline
Esplen, Mary Jane*
Jones, Jennifer*
Nolan, Robert
Regehr, Glenn

AFFILIATE SCIENTISTS
Abbey, Susan
Baker, Brian
Davis, Caroline
de Groot, Janet*
Gagliese, Lucia*
Grace, Sherry
Hamstra, Stanley
Heslegrave, Ron
Hodges, Brian
Irvine, M Jane
Katz, Mark*
McVey, Gail
Reid, Graham
Ritvo, Paul
Robinson, Gail
Styra, Rima
Woodside, Blake

Cell & Molecular Biology

SENIOR SCIENTISTS
Backx, Peter

Berger, Stuart
Cardella, Carl
Cybulsky, Myron
Dick, John
Drucker, Daniel
Elsholz, Harry
Fantus, George
Fish, Eleanor
Gorczynski, Reginald
Gotlieb, Avrum
Grant, David
Johnston, Wayne
Langille, Lowell
Levy, Gary
Liu, Mingyao
Phillips, James
Rubin, Barry
Schuh, Andre*
Whiteside, Catherine
Zacksenhaus, Eldad
Zhang, Li

SCIENTISTS
Belsham, Denise
Cattral, Mark
Husain, Mansoor
Irwin, David
Jin, Tianru
Volchuk, Allen
Waddell, Thomas*

AFFILIATE SCIENTISTS
Branch, Donald
Clark, David
Cole, Edward
Ojha, Matadial
Wen, Xiaoyan
Wilson, Gregory
Toronto Western Research Institute

Research Space 105,000 sq ft
Publications 342
Total External Funding $16,600,000

Staff and Students
Total Number of Researchers 132
Senior Scientists 45
Scientists 9
Affiliate Scientists 14
CSRC Members 65
Total Number of Trainees 167
Fellows 74
Graduate Students 61
Other Students 32
Staff 193

Applied & Interventional Research
SENIOR SCIENTISTS
Brotchie, Jonathan
Chen, Robert
Davis, Karen
De Nil, Luc
Diamant, Nicholas
Feindel, Christopher
Flanagan, John
Hassouna, Magdy
Hutchison, William
Lang, Anthony
Lozano, Andres
Mailis, Angela
McAndrews, Mary Pat
Mikulis, David
Saint-Cyr, Jean
Sandor, Paul
Shapiro, Colin
Sharpe, James
Steinbach, Martin
Trope, Graham
Tymianski, Michael
Wallace, Christopher

Scientists
Irving, Elizabeth
Kayumov, Leonid
Stephens, Robyn
Wilkinson, Frances

Cell & Molecular Biology
SENIOR SCIENTISTS
Barr, Cathy
Bremner, Rod
Broussard, Dianne
Cardella, Carl
Carlen, Peter
Eubanks, James
Fehlings, Michael
Inman, Robert
Jongstra, Jan
Mills, Linda
Nag, Sukriti
Schlichter, Lynanne
Skinner, Frances
Stanley, Elise
Tator, Charles
Tsui, Florence
Wither, Joan

SCIENTISTS
Monnier, Philippe
Sugita, Shuzo
Wan, Qi
Zhang, Liang

AFFILIATE SCIENTISTS
El-Beheiry, Hossam
Gallie, Brenda

Outcomes & Population Health
SENIOR SCIENTISTS
Badley, Elizabeth
Carette, Simon
Research Council

Director
Peter St George-Hyslop

Division Heads
Applied & Interventional Research
Andres Lozano
Cellular & Molecular Biology
Rod Bremner/Cathy Barr (acting)
Outcomes & Population Health
Elizabeth Badley
Clinical Studies Resource Centre
Jenny Heathcote

Vice President, Research
Christopher J. Paige

Clinical Representatives
Michael Fehlings
Nizar Mahomed
Martin Steinbach

Site Representative
Catherine Zahn

Clinical Studies Resource Centre (CSRC)

MEMBERS
Anastakis, Dimitri
Bernstein, Mark
Bookman, Arthur
Buchs, Yvonne
Chan, Vincent
Chapman, Kenneth
Chung, Frances
Davey, Roderick
del Campo, Martin Jose
Devenyi, Robert
Epstein, Trina
Escallon, Jaime
Etlin, David
Evans, Michael
Farb, Richard
Fung, Ken
Gentili, Fred
Graham, Brent
Hawa, Raed
Heathcote, Jenny
Iwanochko, Mark
Lam, Robert
Lam, Wai-Ching
Manninen, Pirjo
Massicotte, Eric
McCarron, Colin
McGuire, Glenn
McIntyre, Roger
Melvin, Kenneth
Miyasaki, Janis
Montanera, Walter
Moro, Elena
Nasmith, James
Oandasan, Ivy
Ogilvie, Richard
Ogilvie-Harris, Darrell
Panisko, Daniel
Parikh, Sagar
Peng, Philip
Radomski, Sidney
Rampersaud, Yoga Raja
Rootman, David
Rosen, Cheryl
Saltzman-Benaiah, Jennifer
Seyo, Chanth
Shannon, Patrick
Shaw, James
Silver, Frank
Simons, Martin
Singer, Shaun
Slomovic, Allan
St George-Hyslop, Peter
Stanbrook, Matthew
Tarlo, Susan
Terbrugge, Karel
Tu, Karen
Tumber, Paul
von Schroeder, Herbert
Voon, Valerie
Wherrett, John
Willinsky, Robert
Wong, David
Wong, Jean
Yogendran, Suntheralingar
Yu, Eric Ho Cheung
Record Donation Accelerates Breast Cancer Research

November 2004: This year UHN Research Day welcomed the International Research Advisory Board as guests to its annual Research Day. This year's Inventor of the Year, selected by the Research Business Development Office's Strategic Advisory Board,

Advisory Board Guests at UHN Research Day

The Campbell Family Institute for Breast Cancer Research at Princess Margaret Hospital was launched this month with a $25M gift. The gift will assist the Institute in becoming a world-leading program by leveraging basic, translational and clinical research into dramatic breast cancer breakthroughs. The funds were donated by Audrey Campbell, daughter of the late Roy Thomson, and her three daughters.

Institute Director Dr. Tak Mak has received numerous international accolades for his scientific discoveries and is most famous for his landmark 1984 cloning of the T-cell receptor genes, a key component of the human immune system.

New Federal Funding Supports Transplant and Cancer Research

October 2004: New funding from the Canada Foundation for Innovation announced this month will help accelerate three projects under the new Research Hospital Fund. The projects are led by Drs. David Jaffray, Gary Levy and Tak Mak, and awards totalled $18M.
Committee, was Dr. Dan Drucker, selected based on his contributions to research in diabetes and intestinal disorders through his discovery and commercialization of the glucagon-like peptides GLP-1 and GLP-2.

A New Look for UHN Research

December 2004: UHN Research made its mark on the world wide web with the re-launch of its website at www.uhnresearch.ca. The re-design features a custom search engine and profiles of more than 400 individual researchers. The new site receives more than 25,000 visits per month.

TGRI Welcomes Dr. Richard Weisel to the Helm

January 2005: Following an international search, cardiovascular surgeon, TGRI Senior Scientist and Chair of the Division of Cardiac Surgery at the University of Toronto Dr. Richard Weisel is named the new Director of the Toronto General Research Institute. With a distinguished UHN career spanning nearly 30 years, Dr. Weisel in his new role commits to providing enhanced support for research at TGRI.

Platform Recommendations Released

Dr. David Naylor Appointed University President

April 2005: Dr. David Naylor, former Dean of the University of Toronto Faculty of Medicine and Vice Provost, Relations with Health Care Institutions, is appointed to the top University post. Dr. Naylor’s extensive experience combines academia and health care and he is a member of the UHN Board of Trustees.

Dr. Robert Bell Appointed as new UHN CEO

May 2005: Dr. Robert Bell, formerly Chief Operating Officer at Princess Margaret Hospital and Medical Director of the UHN Oncology program (2000-2005) was named successor to Tom Closson, outgoing President and CEO of UHN. Dr. Bell is an orthopedic surgeon with a specialized practice in oncology and a successful career in cancer research and education.

A “Brain Gain” for UHN

March 2005: A memorandum of understanding signed this month with the Shanghai Institute of Health Sciences will allow UHN and Canada to tap into valuable resources for health research on an international scale. The Shanghai institute is affiliated with a major medical school and a leading cancer hospital in China, and the new international partnership will provide access to skilled experts in critical areas for the development of new anti-cancer drugs.

The Shanghai collaboration is an example of UHN Research’s “preferred partnership” strategy. UHN Research seeks out groups and institutions with complementary areas of expertise, establishing collaborative relationships to achieve ambitious “win-win” outcomes.

UHN + PARTNERS =
Dr. Suzanne Trudel is one of UHN’s newest scientists, and she was recruited through the McLaughlin Centre for Molecular Medicine (MCMM), a $150M “virtual centre” established in 2001 “to advance the basic biomedical sciences of genetics and molecular biology and translate them into new strategies for disease diagnosis, treatment and prevention.”

The McLaughlin Centre is itself a partnership comprising the University of Toronto Faculty of Medicine, the Hospital for Sick Children, Mount Sinai Hospital, Sunnybrook and Women’s College Health Sciences Centre, and University Health Network. Significant funding is provided by the Ontario Innovation Trust and the McLaughlin Foundation.

Dr. Trudel is a member of the MCMM Program in Molecular Therapeutics, and her research focuses on new drug development for the treatment of mature B–cell malignancies based on molecular targets. Her research has recently resulted in the validation of a new clinical target in myeloma, and the first clinical trial of drugs targeting this molecule.

She did her medical training at the University of Toronto, and was lured back to the city, and to UHN, after further training in the United States. “I was attracted by the opportunity to work at an institute with state-of-the-art tools, world-renowned scientists, one of the top clinical programs in mature B–cell malignancies in North America and with a vision to apply molecular discovery to clinical care of patients.”

In recent years the UHN-McLaughlin partnership has been successful in recruiting two other new investigators, Drs. Xiao-Yen Wen and Aaron Schimmer, both part of the MCMM Program in Molecular Therapeutics.
Metastasis of tumours to the spine is a debilitating outcome for many women with breast cancer, as well as for women and men with several other types of cancer. UHN researchers, in partnership with Sunnybrook and Women’s College Health Sciences Centre and University of California-Davis, as well as the private sector, are working on a revolutionary new way to treat such patients.

The method involves photodynamic therapy, or PDT, in which a targeted laser is used to specifically activate a drug (photosensitizer) that is localized in cancer cells—while causing only minimal damage to surrounding healthy cells.

“PDT is a powerful treatment and its uses against tumours in various parts of the body are only beginning to be shown. The challenge, in each case, is to find a way to shine the light directly on the affected organ. Since laser light does not easily penetrate deeply into tissues, access is simpler in some organs, like the lungs, gastrointestinal track and eye, but more difficult in organs with no external access. Our technology addresses this in the spine,” says Dr. Brian Wilson of OCI/PMH, who, with colleagues Drs. Shane Burch, Stuart Bisland and Jeff Siewerdsen, is leading the program.

Their invention, the bone screw, resembles a metallic straw. The screws can be implanted in affected vertebrae and used to place optical fibers to deliver the light deep into the bone. This device also allows subsequent vertebroplasty—injection of a plastic compound into the vertebra—in order to stabilize and strengthen the bone to improve mobility.

A Canadian biopharmaceutical company, QLT Inc, has a focus in PDT for cancer and other diseases and has joined forces with the group to sponsor a preclinical safety study. “The results of this study are very promising in terms of effectiveness and safety and we’re hoping to move to clinical trials in humans within the next year,” says Dr. Wilson.

Working with the UHN Research Business Development Office, the group has applied for a patent on the device and has also attracted the interest of companies interested in developing guidance and imaging software for the treatment.

Training the Next Generation

University Health Network is a teaching hospital, meaning that it takes very seriously its mandate to train the next generation of health care providers and biomedical researchers.

Funding for training comes from a variety of sources. One of UHN’s innovative programs is the Strategic Training Grant in Regenerative Medicine, funded by the Canadian Institutes of Health Research.

Regenerative medicine embraces ground-breaking new treatments for organ failure—stem cell therapy, therapeutic cloning, tissue engineering, tolerance research, and gene therapy. Led by world-famous transplant physician and researcher Dr. Gary Levy, the CIHR training program is a multi-site (University of Toronto, McMaster University and University of Ottawa), multidisciplinary accredited course for students interested in obtaining a Master’s or PhD in regenerative medicine.

Launched in 2002, the program has enjoyed steady growth. It now boasts fifteen faculty at UHN and other hospitals, and in 2005 the program funded a total of 24 trainees in 16 labs: four postdoctoral fellows, fourteen graduate students and six summer students.

UHN researchers also lead two other training grants funded under the same CIHR program: a group led by Dr. Fei-Fei Lui providing training in radiation medicine and a group led by Dr. Ming Tsao in molecular oncologic pathology.
Esteemed Scientist Takes on New Challenge of TGRI Leadership

This year Toronto General Research Institute welcomed its new Director, Dr. Richard Weisel. A cardiovascular surgeon, TGRI Senior Scientist and Chair of the Division of Cardiac Surgery at the University of Toronto, Dr. Weisel brings a great deal of leadership experience to this role.

“I was attracted to the Director position for the opportunity to focus the activities of the TGRI and enhance the environment for the excellent researchers in our institution,” says Dr. Weisel. “We have an opportunity to take a giant step forward by coordinating our research efforts and consolidating around our strengths.”

“Among its many leading programs, TGRI has specific strengths in cardiovascular, transplant, arthritis and immunity, diabetes, pulmonary, stem cells, genomics and extensive clinical research. The new initiatives will attempt to implement the recommendations of The Future Project and create the collaborations suggested by the four UHN Priority Platforms. The availability of new resources from our successful infrastructure grants and new space in the MaRS Discovery Tower provides a unique opportunity to achieve global impact in research.”

Dr. Weisel’s major research interests lie in cardiac regeneration and tissue engineering. He has more than 170 publications in peer-reviewed journals, and is the recipient of numerous awards, including the Research Achievement Award from the Canadian Cardiovascular Society, the Wilfred Bigelow Award from the Canadian Society of Cardiac Surgeons, the Career Investigator Award from the Heart and Stroke Foundation of Ontario, the Earl Bakken Scientific Achievement Award of the Society of Thoracic Surgeons, the Honored Guest Lecturer, American Association for Thoracic Surgery and the Distinguished Scientist Award from the American Heart Association.

He is proudest of his role in mentoring approximately a dozen clinician-scientists in their research and clinical careers, and he has received the Charles Tator Surgeon-Scientist Mentoring Award from the University of Toronto and the Mentoring Award from the Council on Cardiovascular Surgery, American Heart Association.
New Tower Will Stretch UHN Research Capacity

Not only is the Toronto Medical Discovery Tower (TMDT) a shining example of partnership, it is also an amazing opportunity for growth and expansion of UHN Research.

UHN-MaRS Priorities Aligned
The story starts in June 2001, when UHN sold lands to the Medical and Related Sciences (MaRS) Discovery District, a non-profit group mandated to bring together research, capital and industry.

"UHN was very involved in the process from day one," says Dr. Christopher J. Paige, Vice President, Research. "We selected MaRS because we knew it provided much-needed space to expand our research programs, and their vision of accelerating commercialization was completely aligned with our priorities."

Ultimately UHN became a full partner in the development of the main research tower, which came to be called the
Toronto Medical Discovery Tower.
Design took place over much of 2003
and 2004, with construction commencing

Building on Track for
Occupancy within Months
Fast forward to summer 2005. The
TMDT has been built and stands
fifteen stories high above the corner
of Elizabeth and College Streets in
downtown Toronto. This key location
is on a corner of the UHN campus,
across the street from the provincial
legislature and less than one block
from the University of Toronto. UHN
occupancy is expected in late 2005.

There are many things unique about
the building—the open-concept lab
spaces, the high-end lab finishes, the
powerful mechanical systems that
make it all possible—but the defining
feature of the tower is not its design
but its occupants.

At TMDT a range of disciplines will
be brought to bear on disease. TMDT
research programs incorporate physics,
chemistry, informatics and knowledge
management, and engineering—
along with expertise in basic and
clinical biomedicine.

Funding Partners Key
to Tower’s Framework
The range and breadth of research
expertise is evident in the floor plan.
UHN, with leadership from the scien-
tists and the UHN Foundations,
sourced funding for the creation of
significant new centres and programs
not before seen in Toronto.

One such centre is the T. Robert

Laboratories in the Toronto Medical Discovery Tower
are nearing completion for occupancy in late 2005.

UHN’s expansion into the Toronto
Medical Discovery Tower was made
possible by the following agencies:
• Canada Foundation for Innovation
• Province of Ontario
Special leadership support provided by:
• Campbell Family & Weekend to
End Breast Cancer Walkers for Breast Cancer Research
• Robert & Cheryl McEwen for Regenerative Medicine
• Sandra Rotman for Global Health
• WB Family Foundation for Convergence Centre

Ongoing support provided by:
• Princess Margaret Hospital Foundation, Toronto General &
Western Hospital Foundation and Arthritis & Autoimmunity
Research Centre Foundation

A “Towering” Success
Beamish Family Convergence Centre of Medical Discovery, bringing together more than 60 investigators and staff in the areas of genomics, proteomics, systems biology and informatics, and locating them on one floor in the TMDT.

“The power of this Centre will lie in its ability to integrate a flood of data from genomics and proteomics studies and translate it into real, usable information—patterns and trends—for application to clinical care,” says Dr. Jim Woodgett, a leading scientist in the centre.

Funded by a generous donation from the WB Family Foundation, the Convergence Centre will be one of the first TMDT programs to open, and is slated for occupancy in fall 2005.

Structural Biology and Medicinal Chemistry a “One-Two Punch”

Another breakthrough centre at the TMDT will house two 800 MHz nuclear magnetic resonance (NMR) units, currently among the most powerful in the world. Similar technology to an MRI machine, the NMR is used to take “snapshots” of molecular structure at very high resolution.

The major goal of the program is to investigate specific cancer targets. “We are interested in protein-protein interactions, and specifically the protein interaction network that underlies signaling cascades. Many cancer targets are part of this network and NMR will help researchers to decipher in detail what can go wrong with those targets,” explains Dr. Mitsu Ikura, head of the Division of Signaling Biology and co-leader of the NMR centre with Dr. Cheryl Arrowsmith.

NMR-based structural biology, combined with an emerging medicinal chemistry program that is part of the UHN’s international agreement with Shanghai, will constitute a one-two punch for cancer molecules, using knowledge of molecular structure to devise targeted drug compounds.

A major funder of the NMR centre was a grant from the Canada Foundation for Innovation and the province of Ontario to the Advanced Medical Discovery Institute.

Regenerative Medicine Centre Cuts Across Boundaries

A third centre is the McEwen Centre for Regenerative Medicine, funded through the visionary leadership of donors Robert and Cheryl McEwen.

“Regenerative medicine cuts across traditional research areas by engaging cell biology, engineering, materials science, and surgery. Together these fields can transform how we treat and prevent human diseases through new and innovative therapies,” says Dr. Richard Weisel, who is providing interim leadership for the Centre.

The McEwen Centre will be a hub for this type of research in Canada and will drive collaborative, multidisciplinary research with a focus on new options for cure.

Schematic of UHN spaces within the Toronto Medical Discovery Tower

TMDT a “Powerhouse of Innovation”

These three centres will be joined by, among others, the McLaughlin-Rotman Centre — Molecular Solutions for Global Health, a new initiative led by Dr. Kevin Kain and focusing on research in diagnosing and treating emerging and infectious diseases. The TMDT will also allow creation of the STTARR centre for research enhancing the delivery of radiation therapy, as well as RITT, a new program in infectious diseases/immune system research. Both are funded by the Canada Foundation for Innovation and the province of Ontario.

“Individually, each program is very very strong,” says Dr. Paige. “Any institute would be proud to claim a single one. Together, though, the TMDT programs will be a powerhouse of innovation. The TMDT mission, in brief, is to accelerate cures. With the support of our partners, we’re bringing together the expertise and the equipment to achieve that.”
Ontario Cancer Institute

The stories below showcase some of the many breakthroughs that occurred this year at OCI.

Combined Drug-Radiation Therapy Dramatically Cuts Risk of Breast Cancer Recurrence
In a ground-breaking new multi-centre study Drs. Anthony Fyles, David McCready, and Lee Manchul have found that the use of the drug tamoxifen combined with radiation therapy to treat breast cancer following surgery reduced the likelihood of cancer relapse to virtually zero at five years.

In this study, half the women received the combined treatment, and half received tamoxifen alone. Less than 1% of the women who received the combined treatment had suffered a relapse five years after surgery, compared to almost 8% of the women who received tamoxifen alone.

Says Dr. Fyles, “We didn’t expect to see such a dramatic difference, but the results definitely show that post-surgery radiation therapy offers a significant benefit. Women should continue to discuss the risks and benefits of treatment with their doctors, and make decisions based on what will best work for them.”

The study also involved researchers from Toronto Sunnybrook Regional Cancer Centre (Sunnybrook and Women’s College Health Sciences Centre), University of Toronto, and the British Columbia Cancer Agency.

Tamoxifen blocks the effects of the estrogen hormone.
In an autoimmune disease, the immune system responds to bodily tissue the same way it would respond to an invader—with harmful consequences.

Research Points to Cause of Autoimmunity

Why are some people more likely to develop an autoimmune disease than others? Although many believe it may be due to a process called molecular mimicry, Dr. Pam Ohashi’s research suggests otherwise.

According to the theory of molecular mimicry, people who develop autoimmune diseases such as diabetes or arthritis may have a naturally occurring protein that looks very much like a protein from a virus or bacteria. If these people ever became infected with a “look-alike” pathogen, their immune cells could be spurred to attack their normal proteins as well as the real pathogen. This results in autoimmune disease.

Says Dr. Ohashi, “Our model shows for the first time that there must be a very tight bond between the infecting pathogen and the attacking immune cells before autoimmune disease can develop. It also shows that most people have genes that protect them from this process, indicating that molecular mimicry likely isn’t the cause.”

New Standards of Evidence-Based Care in Prostate Cancer

This year a UHN researcher led an international study which pointed to a new standard of treatment for men with advanced, incurable prostate cancer.

One of the many challenges in clinical trials is to enrol a sufficiently large number of patients to get definitive proof for a conclusion. In this case, PMH’s Dr. Ian Tannock led a phase III trial supported by the drug company Aventis which enlisted 43 oncologists with practices in 24 countries on six continents to test a new treatment regime for advanced prostate cancer.

The two-year study involving 1,000 men has proven that a drug called docetaxel, when taken in combination with prednisone, improved survival by an average of three months when compared to the current treatment regime. It also had a greater chance of reducing pain and improving quality of life in patients with symptoms from their disease, although there was some increase in toxicity.

“Overall, treatment with docetaxel resulted in many patients feeling better and living longer,” says Dr. Tannock. “It is for this reason that we’re recommending docetaxel every three weeks, with daily prednisone, as the new standard of treatment for patients with prostate cancer resistant to hormone therapy.”

In this case, the international, industry-supported partnership generated new hope for men with prostate cancer.

Finding Will Lead to Targeted Therapies for Heart Disease and Brain Disorders

A groundbreaking discovery by Dr. Mitsu Ikura and PhD candidate Ivan Bosanac will lead to the development of new therapies for treating and preventing heart and brain disorders.

In collaboration with Dr. Katsuhiko Mikoshiba of the University of Tokyo, Dr. Ikura used special molecular imaging techniques to visualize the IP3 receptor (IP3R) molecule in three dimensions. Along with its cousin receptor the ryanodine receptor (RyR), the IP3R is responsible for regulating the levels of calcium in our cells. Says Dr. Ikura, “This is a big step towards understanding how the calcium level in the cell is controlled so precisely. The structure of this part of the IP3R is the same in the RyR receptor. Since the IP3R functions in the brain and the RyR functions in the heart, this information could be used to develop drugs for heart problems and brain disorders in the future.” Mol Cell. 2005 Jan 21; 17(2): 193-203.

Inflammatory Switch May Turn Off Disease

In a paper called a landmark in the inflammation field, UHN researchers have identified a switch important in controlling the body’s inflammatory response. The switch—actually a gene called Timp3—was identified by Drs. Rama Khokha and Wen-Chen Yeh and graduate student Dr. Fazilat Mohammed.

As reported in Nature Genetics, the researchers found that mice missing the Timp3 gene were unable to turn off their inflammatory response following tissue injury. “Our research has identified the gene we need to target to gain control of an excessive inflammatory response,” says Dr. Khokha. “Also, it points to Timp3 as a potential treatment for inflammatory conditions. At least one arthritis drug has been shown to increase Timp3 in the body, and this finding has important implications for treating a multitude of diseases including rheumatoid arthritis, diabetes, hepatitis, and cancer, to name just a few.” Nat Genet. 2004 Sep; 36(9): 969-77.
A woman with an altered BRCA1 or BRCA2 gene is estimated to have a 3-7 times greater risk of developing breast cancer over her lifetime.

Group Therapy Eases Breast Cancer Fears

Group therapy improves anxiety, depression, and psychosocial functioning in women who are at higher risk for breast and ovarian cancer because they carry mutations in BRCA1/BRCA2, according to a recent study conducted by Dr. Mary Jane Esplen.

To determine if psychosocial supports would help women deal with their diagnosis, 70 women were recruited to take part in 12 sessions of group therapy. All 67 women who completed the sessions had fewer cancer worries and less depression and anxiety.

Says Dr. Esplen, “Our findings reveal that a support group is extremely beneficial for women who carry mutations in BRCA1/BRCA2. By giving them an opportunity to discuss their concerns and also share thoughts around their decisions regarding prophylactic surgery, it decreased their stress significantly.”

DJ-1 Molecule Newly Implicated in Cancer

A team of researchers including Drs. Tak Mak, Fei-Fei Liu, Armen Manoukian, Ming Tsao and student Raymond Kim have discovered that a molecule called DJ-1 plays a role in the development of cancer.

Using a genetic screening method in fruit flies, they discovered that DJ-1 prevents the tumour suppressor molecule PTEN from doing its job. With PTEN out of commission, cell growth can rage out of control and cancer can develop. Human breast and lung cancer cells also have high levels of the molecule, and lung cancer patients with high levels of DJ-1 are more likely to suffer a relapse.

Says Dr. Mak, “Our results suggest that DJ-1 does play a role in the development of cancer, and in the future it may represent a valuable new target for cancer therapy.”

The stories below showcase some of the many breakthroughs that occurred this year at TGRI.

Fabry’s Disease Treatment Successfully Tested

There is good news for sufferers of Fabry’s disease, a hereditary disorder caused by a faulty gene. People with the disease are missing the activity of the alpha-Gal-A enzyme and, as a result, fats accumulate in their blood vessels damaging the kidneys, heart, and other organs.

Fortunately, Dr. Jeffrey Medin and colleagues have discovered a way to stop the disease. Using gene therapy tools, they gave the alpha-Gal-A enzyme to 1-2 day-old Fabry mice. The treatment proved successful: alpha-Gal-A levels increased, and the levels of accumulated fats dropped. Moreover, the effects were long lasting.

“**The problem with current treatments is that they are given to patients after the damage is done and they aren’t long-term solutions,”** says Dr. Medin. “We needed to find a way to treat Fabry’s patients sooner, to avert the irreversible damage before it happens and also provide sustained therapy.”

Further testing is required before the therapy can be used in humans.

The current treatment for Fabry’s Disease is enzyme replacement therapy—to administer doses of manufactured alpha-Gal-A enzyme.
Anxiety Under-Treated in Heart Patients
A recent study by Drs. Donna Stewart, Sherry Grace, Susan Abbey and Jane Irvine reveals that anxiety symptoms may be ignored in heart patients—something which may negatively impact their recovery and health. Using surveys, the research team assessed anxiety in 913 heart patients over one year of recovery. More than one third of patients suffered from anxiety at the time of their coronary event, and approximately 50% of them continued to report it at six months and one year post-event. “Surprisingly, we found that only 38% of patients with anxiety were asked about anxiety symptoms by their healthcare providers during the course of the year,” says Dr. Grace. “This tells us that anxiety symptoms are likely under-recognized and under-treated in heart patients, and that anxiety-reducing interventions are needed to improve quality of life.” Psychother Psychosom. 2004 Nov-Dec; 73(6): 344-52.

New Diabetes Treatments
Type 2 diabetes is a disease characterized by high levels of blood glucose and low levels of insulin and/or defective insulin action. TGH/TGRI’s Dr. Daniel Drucker is one of a handful of researchers in the world studying the protein GLP-1 (glucagon-like peptide-1), which plays a key role in controlling blood glucose levels.

A recent study by Dr. Drucker’s group sheds further light on GLP-1’s role. His team examined the effects of GLP-1’s glucose-regulating actions in mice lacking a factor called Pdx-1—a regulator of insulin production in the pancreas. They observed that the presence of Pdx-1 was essential for GLP-1’s ability to control blood glucose levels.

Says Dr. Drucker, “Our study predicts that subtypes of diabetes associated with genetic or acquired defects in Pdx-1 action—in maturity-onset diabetes of the young or other forms of type 2 diabetes—may result in sub-optimal responses to treatment with drugs mimicking GLP-1’s actions.”

Based on the work of Dr. Drucker and others, pharmaceutical companies are developing drugs mimicking the action of GLP-1. These drugs are currently being evaluated for their efficacy in treating diabetes. The first GLP-1-related drug was approved for the treatment of type 2 diabetes in the United States in April 2005. Diabetes. 2005 February; 54: 482-491.
One Step Further to Finding the Cause of a Rare Genetic Disorder

Wiskott-Aldrich Syndrome is a rare, inherited disorder that is characterized by repeated infections due to malfunctions in the immune system. Scientists have identified defects in the WASP (Wiskott-Aldrich Syndrome protein family) gene to be a key factor in the cause of this disorder.

TGRi’s Dr. Katherine Siminovitch is a world expert in this disease and is particularly interested in its genetic basis. As part of her studies, she and her team recently examined the role of WASP by studying the interactions of WAVE-2—a WASP-related molecule—with the molecule Abi-1 in immune cells.

Her team showed that Abi-1 association to WAVE-2 is essential for many immune cell functions. “Any mutations in Abi-1 would therefore impede these important functions—including those required to fight infection,” says Dr. Siminovitch. “Knowing this, we are one step closer to understanding how the immune system works and how it might be manipulated to prevent disease.”

Molecule Critical for Fighting Viral-Induced Heart Disease

Myocarditis is an inflammatory disease of the heart muscle that is often caused by infection by coxsackievirus. In serious cases, it can lead to heart failure. Previous studies by others indicated that the immune molecule called IFN-beta plays an important role in fighting the virus, and Drs. Eleanor Fish and Peter Liu further assessed its role by comparing the severity of infection in mice missing the IFN-beta molecule, to mice with the IFN-beta molecule intact.

“Our results clearly show that the viral infection was more aggressive in mice missing IFN-beta,” says Dr. Fish. “The data confirm a critical role for IFN-beta in mediating protection from coxsackievirus infection and subsequent heart problems.”

Genes Predicting Hep C Treatment Response Identified

New research by UHN’s Drs. Ian McGilvray and Jenny Heathcote has put health care providers one step closer to providing personalized care for the 230,000 Canadians with hepatitis C. The research team used advanced genomics techniques and microarray technology to identify a subset of 18 genes that can predict a patient’s response to therapy. The study followed 31 patients with the disease who were treated at TWH.

Says Dr. McGilvray, “Our results show that a small number of genes can predict how a patient will respond to therapy, and it suggests that these genes may be important for helping the patient eliminate the virus. In the future we might be able to manipulate the products of these genes to improve how patients respond to treatment.”

Gastroenterology. 2005 May; 128(5): 1437-44.
Gene Therapy Boosts Cell Transplantation Success in Injured Hearts

A heart attack leaves injured tissue that prevents proper heart function and may lead to heart failure. Transplanting healthy cells into damaged heart tissue has shown promising results in the lab—however, the low survival rate of these cells remains a concern in developing this treatment for patients.

Pioneering research by Dr. Ren-Ke Li and his group at TGRI/TGH showed that using gene therapy in transplanted cells could be the answer to this problem. This group compared transplanting normal cells with transplanting cells that had the IGF-1—a molecule that increases cell growth and survival—gene inserted in them. They obtained a significant increase in cell survival after transplantation and found that IGF-1 gene therapy led to improved blood vessel formation in the injured tissue.

“We’re very pleased with these results, and we are continuing to study whether implanting these modified cells can actually improve heart function in the long term,” says Dr. Li.

Hepatic Lipase Enzyme Pinpointed in Abnormal Fat Metabolism in Pre-Diabetic States

Insulin resistance syndrome—in which many cells in the body, in particular muscle, fat, and liver cells, do not respond to insulin properly—is linked with an increased risk for developing type 2 diabetes and coronary artery disease.

Recent studies by Dr. Gary Lewis revealed that high levels of an enzyme called hepatic lipase, which is made in the liver and regulates cholesterol levels in the blood, are associated with the abnormal fat metabolism of pre-diabetic states and type 2 diabetes.

“Increases in this enzyme in pre-diabetic and diabetic states may play a key role in developing abnormal fat metabolism and coronary artery disease associated with these conditions, particularly in the formation of small, dense LDL (so-called “bad” cholesterol) and the reduction in HDL (“good” cholesterol),” says Dr. Lewis.

“This is the first time that we’ve been able to show that this enzyme’s gene expression level in the liver and blood level increases in an animal model that is made insulin-resistant by feeding high fructose (a sugar). We’ve also shown that the levels are corrected by treatment of the insulin resistance. We look forward to studying these observations in patients.”

Excess weight, lack of exercise, and genetic factors can all contribute to developing insulin resistance (IR).

The NIH calls IR a “stepping-stone” to type 2 diabetes.

Cardiovascular disease remains the number one killer in Canada.

In 2002, 74,626 Canadians died as a result of cardiovascular diseases.

Excess weight, lack of exercise, and genetic factors can all contribute to developing insulin resistance (IR).

The NIH calls IR a “stepping-stone” to type 2 diabetes.
The stories below showcase some of the many breakthroughs that occurred this year at TWRI.

Research Describes Mechanism of Secondary Brain Injury

Mild brain injuries rarely cause neuronal death, but they do make the brain’s neurons more vulnerable to secondary injuries. To determine the cause of this increased sensitivity, Dr. Michael Tymianski simulated mild brain injury in cultured neurons by mechanically stretching them. This caused the neuronal cells to produce very high levels of a toxic chemical called ROS, making them abnormally sensitive to glutamate, a neurochemical involved in secondary injuries and stroke. Blocking the actions of ROS and glutamate prevented neuronal cell death.

This study describes the mechanism by which secondary brain injury occurs, and highlights the importance of this type of injury to the ultimate outcome of neurons following mild brain injury.

“Secondary” brain injuries occur minutes, hours or days after the initial insult. Much research is focused on reducing damage stemming from secondary injuries.
Risk Factor for Dyslexia Identified

Dyslexia is an inherited language-based learning disability and new research by Dr. Cathy Barr provides evidence that the region containing the gene called EKN1 may be a risk factor for the disorder.

Following up on studies by others, Dr. Barr examined the relationship of the EKN1 gene to dyslexia in children aged six to sixteen, who were recruited from 148 families with known reading difficulties. Her genetic analysis revealed that the chromosomal region containing this gene contributes to reading ability and reading-related processes.

Says Dr. Barr, “Our findings support the idea that the region of the EKN1 gene may be involved in dyslexia, but further studies are necessary to determine the precise relationship of the gene to the disorder.”

Malfunctions in the parkin gene are a major cause of Parkinson disease, and new research by TWRI/TWH’s Dr. Andres Lozano, student Suneil Kalia, and post-doctoral fellow Sang Lee, along with colleagues at the University of Ottawa, McGill University and the University of Toronto, reveals another way in which the parkin gene can be compromised. The finding may lead to new drugs for treating the disease.

If not removed from the cell, damaged proteins clump together forming aggregates—a lethal consequence found in many neurodegenerative diseases. Part of the cell’s “garbage disposal system,” parkin tags these damaged proteins for destruction.

The research team found that a protein called BAG5 prevents parkin from doing its job. BAG5 also inhibited parkin’s helper-protein, Hsp70.

“High levels of BAG5 inhibited the actions of parkin and Hsp70 resulting in enhanced neuronal cell death,” says Dr. Lozano. “Our results propose a mechanism for the cause of neurodegeneration in Parkinson’s disease and other diseases, and points to BAG5 as a potential therapeutic target for Parkinson’s patients.”

Functional MRI allows researchers to study brain activation-induced changes in blood flow, oxygenation, and volume.

Cognitive Therapy May Diminish Pain
Using functional MRI techniques, Dr. Karen Davis and PhD student David Seminowicz have found evidence to support the idea that, in some people, a busy brain may divert their attention away from a painful experience.

The researchers applied a mildly painful stimulus to 16 healthy volunteers who were busy concentrating on a task, and measured how their brains perceived the stimulus. They found that while the stimulus made some people lose their focus, it sharpened the concentration of others.

In this latter group of people, it also reduced their pain-related brain activity.

“The fact that there are two different types of responders suggests that different people deal with pain in different ways,” says Dr. Davis. “Our results show a biological basis for the finding that cognitive therapies may be useful for treating pain in some people.”

Parkinson’s Disease Treatment Also Alleviates Depression
In collaboration with a team of Toronto scientists, Drs. Andres Lozano and Sidney Kennedy and Dr. Helen Mayberg (Emory University School of Medicine) recently showed that deep brain stimulation (DBS)—a procedure usually reserved for treating Parkinson’s disease and epilepsy—alleviates severe depression.

Based on the team’s previous findings that an area of the brain called Cg25 is important for mood regulation, the research team suspected that DBS might be useful to “retune” this area of the brain. The treatment was successful: changes observed in four of the six patients treated resembled changes that are seen when patients respond successfully to the standard treatment. Says Dr. Lozano, “Our study shows that DBS can lead to striking and sustained remission of depression in some patients. It further suggests that DBS may become a standard therapy for treating severely depressed people who are resistant to drug therapy.”

Up to 20% of people with depression fail to respond to medications or psychotherapy. For this group, there is a clear need for new treatment options.
Analysis of Research Activity at UHN

Nearly every paper published in a peer-reviewed journal contains a list of citations: references to earlier papers which helped the authors define and answer their current research question. A paper which is influential in its field will be cited frequently by other authors over the months and years following its publication.

Citation analysis is used by institutions around the world as one way of measuring research productivity and success. UHN Research has over the past three years been collecting citation analysis information to determine its usefulness as a method of measuring scientific impact over time.

Citation analysis uses databases to search and count all references to a certain paper to determine its impact on a field. We can also do this for all papers published by a scientist or group of scientists over a defined time period.

Citation Data for Papers Published by UHN Researchers

(2002/04 inclusive)

<table>
<thead>
<tr>
<th>Institute</th>
<th># of Papers (2002/04)</th>
<th>Citations to date</th>
<th>Papers in Top Journals †</th>
<th>Top Papers §</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCI</td>
<td>1203</td>
<td>10703</td>
<td>159 (13%)</td>
<td>317 (26%)</td>
</tr>
<tr>
<td>TGRI</td>
<td>1553</td>
<td>12682</td>
<td>150 (10%)</td>
<td>416 (27%)</td>
</tr>
<tr>
<td>TWRI</td>
<td>1024</td>
<td>6845</td>
<td>51 (5%)</td>
<td>208 (20%)</td>
</tr>
<tr>
<td>UHN</td>
<td>3497*</td>
<td>28515</td>
<td>340 (10%)</td>
<td>881 (25%)</td>
</tr>
</tbody>
</table>

* Where papers are collaborations between scientists at different UHN research institutes, papers are counted only once in the "UHN" total

† "Top Journals" are those journals with an impact factor > 10 (as defined by the Institute for Scientific Information)

§ "Top Papers" are papers in the top 10% of papers (as defined by the Institute for Scientific Information)
UHN Research Support Services

Research Support Services provides a supportive collaborative infrastructure for research across UHN's institutes. Approximately 260 support staff provide a range of services for UHN's researchers, staff and trainees.

Animal Resource Centre: Provides facilities, care and technical services for animal models used in research as well as experimental design support and ethics review

Grant and Contract Services: Reviews clinical trial agreements, tracks information regarding employees and grants, and processes documents for hiring new research staff

Clinical Research Unit (PMH) and Clinical Studies Resource Centres (TGH/TWH): Assists clinical investigators in initiating, conducting, managing and analyzing investigator-driven and industry-sponsored clinical research

Research Business Development Office: Commercializes research discoveries that help investigate, treat and diagnose disease, to generate revenue for inventors and research reinvestment

Research Communications and Proposal Development: Develops print and electronic communications in consultation with internal and external stakeholders for various audiences

Research Ethics Board: Oversees research involving human subjects to ensure it meets the highest scientific and ethical standards to protect patients,

New Service Strategy

UHN Research Support Services is in year three of a five-year project to improve client service and streamline processes.

The new Service Strategy involves significant re-tooling of support processes. In 2004/05, a number of new initiatives were implemented to meet new client service objectives. These included:

- New user committees to enhance user input to key service departments
- New online administrative tools for faster response and feedback

RSS User Committees

Grant & Contract Services (GCS)
- Jennifer Bayne
- Cameron Chiarot
- Malcolm Moore
- Jim Woodgett
- Paul MacPherson, Manager, GCS
- Pat Clark, GCS
- Angela Fong, GCS
- Ken Woo, Human Resources

Research Financial Services (RFS)
- Jo Carroll
- Shelley Malton
- Gerald Devins
- David Rose

Research Business Development Office (RBDO)
- Brian Barber
- Tony Easty
- Micheline Gravelle

<table>
<thead>
<tr>
<th>Brenda Gallie</th>
<th>Marion Snyder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karen Hatch</td>
<td>Lucy Teves</td>
</tr>
<tr>
<td>Minnie Kim</td>
<td>Neil Winegarden</td>
</tr>
<tr>
<td>Anna Kushnir</td>
<td>Christopher Adams, Manager, RFS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Christopher Adams, Manager, RFS</td>
<td></td>
</tr>
<tr>
<td>Marcellus Arokium, RFS</td>
<td></td>
</tr>
<tr>
<td>Dianne Billows, RFS</td>
<td></td>
</tr>
<tr>
<td>David Fernandes, RFS</td>
<td></td>
</tr>
<tr>
<td>Frances Guglielmo, SHSS</td>
<td></td>
</tr>
<tr>
<td>Bala Kumbakonam, RFS</td>
<td></td>
</tr>
<tr>
<td>Ashley Taylor, Accounts Payable</td>
<td></td>
</tr>
</tbody>
</table>

32 RESEARCH REPORT 2005
investigators and the institution

Research Facilities: Involves the management of office and lab space, relocations and renovations, core equipment and general equipment, maintenance, and safety

Research Financial Services: Provides financial information and services to investigators, research administration and sponsors related to research funding and disbursements

Research Information Systems: Provides researchers a full range of computing services from email and file storage to remote access and the power of high processing clusters

Research Training Development and Information Services: Designs and implements research orientation and training programs and collaborates with other departments to develop applications, procedures and policies

Research Program Planning and Analysis: Provides analyses of research activity and supports performance evaluation activities of research programs and departments

Sterilization, Sera and Media Services: Co-ordinates the purchase, cleaning and sterilization of laboratory glassware and the provision of tissue culture and bacteriological media

Vice President’s Office: Provides strategic leadership for UHN Research in consultation with the Research Councils

New Online Tools from RSS in 2004/05

Animal Protocol Management & Ordering
The first fully online tool for submitting and tracking new animal use protocols and ordering animal stocks for studies

Staff Directory
Fully searchable database of contact information on all Research staff and trainees

Process Improvement Log
Online feedback form allowing client input on services and processes. Also features a survey tool to elicit feedback on specific services

Financial Information System from Research Financial Services
Online access to researcher accounts information relating to grants funding and operating expenses

“My Account” Application from Research Information Systems
One-stop tool to manage and edit all RIS computer account preferences in one location
Research Funding Revenues

All figures represent fiscal year 2004/05 and include Ontario Cancer Institute (Princess Margaret Hospital); Toronto General Research Institute (Toronto General Hospital); and Toronto Western Research Institute (Toronto Western Hospital).

These figures have been provided by UHN Research Financial Services and Research Grant and Contract Services. These figures have not been audited. However, they have been included in the overall UHN statements and, as a result, have been subjected to audit procedures deemed appropriate by auditors in order to determine their overall reasonableness.

Total External Funding Awarded by Purpose of Funding

(Thousands of dollars)

<table>
<thead>
<tr>
<th>Funding Category</th>
<th>Amount (Thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Studies</td>
<td>11,954</td>
</tr>
<tr>
<td>Corporate Contracts</td>
<td>6,913</td>
</tr>
<tr>
<td>Infrastructure/Maintenance Awards</td>
<td>12,471</td>
</tr>
<tr>
<td>Career/Traineeship Awards</td>
<td>7,880</td>
</tr>
<tr>
<td>Other</td>
<td>9,651</td>
</tr>
<tr>
<td>Total</td>
<td>128,615</td>
</tr>
</tbody>
</table>

UHN Research Core Funding

(Thousands of dollars)

<table>
<thead>
<tr>
<th>Foundation</th>
<th>Amount (Thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Princess Margaret Hospital Foundation</td>
<td>13,200</td>
</tr>
<tr>
<td>Toronto General & Western Hospital Foundation</td>
<td>2,500</td>
</tr>
<tr>
<td>Arthritis & Autoimmunity</td>
<td>1,250</td>
</tr>
<tr>
<td>Research Centre Foundation</td>
<td></td>
</tr>
<tr>
<td>Ministry of Health & Long Term Care</td>
<td>2,816</td>
</tr>
<tr>
<td>Recoveries</td>
<td>5,839</td>
</tr>
<tr>
<td>Investment income</td>
<td>3,256</td>
</tr>
<tr>
<td>Other</td>
<td>8,883</td>
</tr>
<tr>
<td>TOTAL</td>
<td>37,744</td>
</tr>
</tbody>
</table>

Major Sources of External Funding

(Thousands of dollars)

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount (Thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Institutes of Health Research</td>
<td>21,706</td>
</tr>
<tr>
<td>Ontario R&D Challenge Fund</td>
<td>16,003</td>
</tr>
<tr>
<td>National Cancer Institute of Canada</td>
<td>10,627</td>
</tr>
<tr>
<td>National Institutes of Health (US)</td>
<td>7,481</td>
</tr>
<tr>
<td>Canada Foundation for Innovation</td>
<td>6,857</td>
</tr>
<tr>
<td>Heart and Stroke Foundations</td>
<td>4,168</td>
</tr>
<tr>
<td>Ontario Cancer Research Network</td>
<td>4,049</td>
</tr>
<tr>
<td>Ontario Innovation Trust</td>
<td>3,370</td>
</tr>
</tbody>
</table>
External Agencies Funding UHN Research

Abbott Laboratories • Achillion Pharmaceutical Inc • Actelion Pharmaceuticals Ltd • Agouron Pharma Inc • Aicardi Research Ltd • Allergan Sales Inc • Alliance Pharmaceutical Corp • Alltrials Therapeutics • Alteon Inc • Alzheimer Society of Canada • Alzheimer’s Disease and Related Disorders Association • Amcyte • American Association for the Study of Liver Diseases • American Association for Thoracic Surgery • American Association of Neurological Surgeons • American College of Surgeons Oncology Group • American Digestive Health Foundation • American Foundation for AIDS Research • American Foundation for Urologic Disease • American Society of Clinical Oncology • American Society of Echocardiography • American Society of Hematology • American Society of Interventional & Therapeutic Neurology • American Society of Regional Anesthesia • Angen • Amyotrophic Lateral Sclerosis Society of Canada • Aneria Institute for Research and Education • AD-ASIF Research Foundation • Aitken Therapeutics • Alion Research • Arthritis Center of Excellence • Arthritis Community Research & Evaluation Unit • Arthritis Health Professions Association of Ontario • Arthritis Society • AnthroLab Inc • Associated Medical Services Inc • Asta Pharma • AstraZenea • Aventis Pasteur • Axcam Pharma • Banting and Best Diabetes Centre • Bausch and Lomb • Baxter Healthcare Corporation • Bayer • Beckman Coulter • Beller Laboratories • Bioxone • Biochrem Therapeutics • BioMedicines • Blooming Epilepsy Research • Biotheringer Ingeheilm • Boston Scientific Corporation • Brahms Diagnostica • Breast Cancer Society of Canada • Bristol-Myers Squibb Pharmaceutical Research Institute • Broncos Technologies • Burroughs Welcome • C.R. Younger Foundation • Canada Foundation for Innovation • Canada Mortgage and Housing Corporation • Canadian Anesthesiologists Society • Canadian Arthritis Network • Canadian Association of Gastroenterology • Canadian Association for the Study of the Liver • Canadian Association of Radiation Oncologists • Canadian Blood Services • Canadian Breast Cancer Foundation • Canadian Breast Cancer Research Alliance • Canadian Cancer Etiology Research Network • Canadian Cancer Society • Canadian Cochran Network and Centre • Canadian Coordinating Office for Health Technology Assessment • Canadian Cystic Fibrosis Foundation • Canadian Dermatology Foundation • Canadian Diabetes Association • Canadian Foundation for AIDS Research • Canadian Foundation for Women’s Health • Canadian Health Services Research Foundation • Canadian Hemophilia Society • Canadian Institute for Health Research • Canadian Liver Foundation • Canadian Lung Association • Canadian National Institute for the Blind • Canadian Neurotrauma Research Program • Canadian Orthopaedic Foundation • Canadian Prostate Centre Inc • Canadian Society of Hospital Pharmacists • Canadian Stroke Network • Canadian Urologic Oncology Group • Cancer Care Ontario • Cancer Coping Skills Training Program • Cancer Research Institute • Cancer Research Society Inc • Cangene Corporation • CANAP/CHIR • Cardiac Rehabilitation Network • Canadian Chicoree Porcine Research Society • Chalone Biotech Inc • Change Foundation • Chiron Corporation • Christopher Reeve Paralysis Foundation • Ciba • Ciba Geigy • Citizen United for Research in Epilepsy • City of Toronto Public Health Dept • Clifford Craig Medical Research • CLP Research • Coaly Pharmaceutical Group • Cook (Canada) Inc • CORPHER Inc • Corvita Canada Inc • Covance Inc • Crohn’s and Colitis Foundation of Canada • CromaMed Inc • Cyanamid • Dairy Farmers of Canada • Defense and Civil Institute of Environmental Medicine • Delex Therapeutics Inc • Den Haag Trust • Department of Justice Canada • Department of National Defense • Dow Corning • Dupont Pharmaceutical Company • Dysphonia Medical Research Foundation • ECHO Research • Edwards Lifesciences, LLC • EISAI Medical Research Inc • Eli Lilly Pharmaceutical Inc • Eli Lilly Pharmaceutical Systems (U.K.) • Eli Lilly • Elia U. Pardee Foundation • Endpoint Research Ltd • Epilepsy Canada • Ettie USA Inc • Expression Diagnostics • Eye Research Institute of Canada • Ferx Incorporated • Foundation for Gene & Cell Therapy • Foundation for Lung Cancer • Fournier • Fragile X Research Foundation of Canada • Friesenius Hemocare • Friends of the Jose Carreras Int’l Leukemia Fdn • Fujisawa Canada • Gemma BioTechnology Ltd • Gene Therapy Fund • Genentech Inc • Genentech Inc • Genome Canada • GENTA Incorporated • Genzyme • Geoffrey H. Wood Foundation • Gilead Sciences • Glaxo • GlaxoSmithKline Inc • GlycoDesign Inc • GoV’t of Canada Canadian Space Agency • Head and Neck Cancer Foundation • Health and Welfare Canada • Healthcare Technology Systems • Heart and Stroke Foundation • Hemosol Inc • Hoechst Marion Roussel • Hoffmann-La Roche Limited • Hospital for Sick Children Foundation • Howard Hughes Medical Institute • Human Genome Sciences • Hurricane Voices Foundation • IBM • ICBR6 • IDEC Pharmaceutical Corporation • Idenix Pharmaceuticals, Inc. • Ilex Oncology Inc • Immunex Corporation • IMRA Inc • Imura Foundation • International Assocation • International Foundation for the Study of the Liver • International Myeloma Foundation • International Society for Heart & Lung Transplantation • International Union Against Cancer • International Union of Biochemistry and Molecular Biology • Int’l Council on Magnetic Resonance in Biologic Systems • ISTA Pharmaceuticals Inc • IVAX Research Inc • J.R. Beekman Foundation • James Eiving Foundation • Janssen Pharmaceuticals • Janssen Ortho Inc • Johnson & Johnson Pharmaceutical Research & Development • Joint Section on Spine and Peripheral Nerves • Joint Centre of Excellence for Research on Immigration and Settlement • Journal of Medical Internet Research • Jupiter Bioscience Ltd • Juvenile Diabetes Foundation Int’l • Kidney Foundation of Canada • Knoll Pharmaceutical Company • Kooten Therapeutics Inc • Kynova Pharmaceutical Co • La Jolla Pharmaceutical Company • Leukemia & Lymphoma Society • Leukemia Research Foundation Inc • Leonardi • Liposome Company Inc • Lorus Therapeutics Inc • Lupus Canada • Lupus Clinical Trials Consortium • Lupus Foundation of Ontario • Mallinckrodt Medical Inc • Maryland Medical Research Institute • Mayo Foundation • Med Innova Partners Inc • MedCircle • Medical Council of Canada • Medicare • Medtronic Inc • Medtronic Neurological • Merck Frosst Canada Co • MERIX Bioscience Inc • Metagenics • Michael J. Fox Foundation for Parkinson’s Research • Michael Smith Foundation for Health Research • Micrologix Biotech • Mikana Therapeutics Inc • Millennium Pharmaceuticals Inc • Ministry of Education and Training • Ministry of Health and Long Term Care • MMD Canada • Molecular Templates Inc • Movement Disorders Society • MSUW • Multiple Sclerosis Foundation • Multiplie Sclerosis Society of Canada • Myriad Pharmaceuticals • National Alliance for Research of Schizophrenia and Depression • National Cancer Institute of Canada • National Glaucoma Research • National Institutes of Health • National Organization for Rare Disorders • National Sanitarium Association • National Surgical Adjunct Breast and Bowel Project • National Institutes of Health • National Network for Vaccines and Immunotherapeutics • NCE Canadian Network for Network for Network for Network for • NCE: Canadian Institute for Photonics Innovation • NCE: Canadian Network for Network for • NCE: MITACS • NCE: PENCE • NCE: Stem Cell Network • NCE: Arthritis Center of Excellence • Neo Therapeutics Inc • Neurologia Inc • Neuroprotection Inc • Neuroscience Canada • North American Spine Society & Novartis Institutes for BioMedical Research • Novartis Pharmaceuticals Canada Inc • Novopharm Biotech Inc • NPS Allexil Corp • Nycomed Amersham • Oncology Nursing Society Foundation • Ontario Association of Medical Laboratories • Ontario Cancer Research Network • Ontario Cancer Treatment and Research Foundation • Ontario Clinical Oncology Group • Ontario Consortium for Image Guided Therapy & Surgery • Ontario Genomics Institute • Ontario HIV Treatment Network • Ontario Hospital Association • Ontario Innovation Trust • Ontario Kidney Research Foundation • Ontario Mental Health Foundation • Ontario Neurotrauma Foundation • Ontario R&D Challenge Fund • Ontario Research Performance Fund • Ontario Thoracic Society • Ontario Women’s Health Council • Ortho Biotech • Otuska • Parelax • Patike-Davis • Parkinson Foundation of Canada • Parkinson Society Canada • Parkinson’s Disease Foundation • Pfizer Canada Inc • Pharmacia • Pharmacia & Upjohn • Pharmacelics • PharmaResearch • Photons Research Ontario • Physicians Services Incorporated Foundation • Picker International Canada Inc • Plasma Protein Therapeutics Association • Plastic Surgery Educational Foundation • Proacs Medical Inc • Price Foundation • Procter & Gamble Pharmacueticals Canada Inc • Prostate Cancer Research Foundation of Canada • Purdue Frederick • Purdue Pharma LP • Q Med AB • QLT Inc • R.W. Johnson Pharmaceutical Research Institute • Radium • Rheumottom • Rheumapulse • Riken Brain Science Institute • JAPAN Roche • Roche Organ Transplantation Research Foundation • Rofers • Royal College of Physicians and Surgeons of Canada • SACT • Fredrick Inc • Sandoz Canada Inc • Sangstat Medical Corporation • Sanofi • Sinterlabo Canada Inc • Savoy Foundation • Schein Pharmaceutical Inc • Schering Canada Inc • Schering Plough Research Institute • Scream Corporation • Searle Canada • Senesco Technologies • Sepiois Inc • Serono • Servera Canada Inc • Siemens Medical Solutions • Sir Jules Thorn Charitable Trust • Snell Medical Communication Inc • Social Sciences and Humanities Research Council of Canada • Society of Chinese Bio-Scientists in America • Solutions By Sequence • STEBA BIBERH N.V /Netherland • Stryker Biotech • SuperGen Inc • Surgical Infection Society • Susan G. Komen Breast Cancer Fdn • Synbiosis • Syreon Corporation • Systemix • T.C. Science Inc • Taylor & Frenes Group Publishing (UK) • Theradex Systems, Inc • TheraTechnologies • Thoracic Surgery Foundation for Research and Education • Thrombosis Research Group • Thornhill Foundation of Canada • Tiffin Trust Fund • Toronto Medical Laboratories • Translarykter Therapeutics Inc • Trinity Hospital MR Centre • Trium Therapeutics • U.S. Army • U.S. Department of Energy • U.S. Pharmacopeia • Unilever • University Renal Research & Education Association • Upjohn • UCB • UCB • University of alberta • Viacell Technologies • Violetta Biotech • Vicuron Pharmaceutical Inc • Wegener’s Granulo- matosis Association • Workplace Safety and Insurance Board • Weyth-Ayers Canada • Xilinx Technologies • Yamamushi U.S.A. Health • York Medical Inc • Younger Foundation • Zarin Inc • Zeneca Pharma Inc
UHN Research Committees

<table>
<thead>
<tr>
<th>Committee</th>
<th>Chair</th>
<th>Co-Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosafety Committee</td>
<td>Jim Brunton</td>
<td>Eric Baillie</td>
</tr>
<tr>
<td>Radionuclide Safety Committee</td>
<td>Frank Tourneur</td>
<td>Ian McDermott</td>
</tr>
<tr>
<td>Research Ethics Board</td>
<td>Ronald Heslegrave</td>
<td>(Chair)</td>
</tr>
<tr>
<td>Cancer Registry and Data Access Committee</td>
<td>Jim Brierley</td>
<td>(Chair)</td>
</tr>
<tr>
<td>Human Tissue Committee</td>
<td>Ronald Heslegrave</td>
<td>(Chair)</td>
</tr>
<tr>
<td>Equipment Committee</td>
<td>Richard Hill</td>
<td>(Chair)</td>
</tr>
<tr>
<td>Space Committee</td>
<td>Christopher J. Paige</td>
<td>(Chair)</td>
</tr>
<tr>
<td>Clinical Research Unit Executive</td>
<td>Padraig Warde</td>
<td>(Chair)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Committee</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosafety Committee</td>
<td>Elizabeth Sloss, Catherine Tansey, Katherine Tsang, Diane Watson, Linda Wright</td>
</tr>
<tr>
<td>Research Ethics Board</td>
<td>Ronald Heslegrave (Chair), Nancy Bestic, Carol Ann Buckley, Eric Chen, Paola Cubillos-Rizo, Laura Dawson, Heidi Gotthardt, Micheile Henry, Wey Leong, Warren Mason, Michael McLean, Mark Minden, Malcolm Moore, Jane Nagai, Larissa Potanina, Gregory Pond, Michael Reedijk, Andre Schuh</td>
</tr>
<tr>
<td>Cancer Registry and Data Access Committee</td>
<td>Jim Brierley (Chair), Darlene Dale (Chair), Alexandra Easson, Vikas Gupta, Ozgur Huner, Jonathan Irish, Brian O’Sullivan, Krista Montgomery, Tony Panzarella</td>
</tr>
<tr>
<td>Human Tissue Committee</td>
<td>Ronald Heslegrave (Chair), Michele Henry, Richard Hill, Michael Johnston, Patrick Shannon, Patricia Shaw, Ming Tsao, Mary Jane Salpeter</td>
</tr>
<tr>
<td>Equipment Committee</td>
<td>Richard Hill (Chair), Dwayne Barber, Avi Chakrabarty, Brian Wilson, Gil Privé, Jim Woodgett, Ian McDermott, Malcolm Smith</td>
</tr>
<tr>
<td>Space Committee</td>
<td>Christopher J. Paige (Chair), Dwayne Barber, Ambrosio DiMagiba, Mitsu Ikura, Rama Khokha, Fei-Fei Liu, Mark Minden, Ian McDermott, Linda Penn, Robert Woodgate, Alex Vitken, Brian Wilson</td>
</tr>
<tr>
<td>Clinical Research Unit Executive</td>
<td>Padraig Warde (Chair), Sylvia Asa, Darlene Dale, Gerald Devins, Lee Fairclough, Neil Fleshner, Mary Gospodarowicz, Jonathan Irish</td>
</tr>
</tbody>
</table>
Endowed Chairs at University Health Network

Much of the research at UHN is made possible through the generosity of donors, who contribute to UHN's work through the three UHN Foundations and their fund-raising efforts.

Among the most generous of contributors is an endowed Chair, established at a minimum level of $2M. The income from this endowment provides ongoing funding for the Chairholder.

Dr. Jim Woodgett
The AMGEN Chair in Cancer Research

Dr. Brian O’Sullivan
The Bartley-Smith/Wharton Chair in Radiation Oncology

Dr. Ian Tannock
The Daniel E. Bergsagel Chair in Oncologic Pathology

Dr. Lorelei Lingard
The JC Boileau Grant Chair in Health Professions Education Research

Dr. Jeremy Squire
The J.C. Boileau Grant Chair in Oncologic Pathology (to be appointed)

Alan B. Brown Chair in Molecular Genomics

Dr. Christopher Paige
The Ronald N. Buick Chair in Cancer Research (to be appointed)

Dr. Charles Tator
The Robert Campeau Family Foundation Chair in Brain and Spinal Cord Research

Dr. Ming Tsoo
The M. Qasim Choksi Lung Cancer Chair in Translational Research

Dr. Ori Rotstein
The Fleck/Tanenbaum Chair in Prostatic Diseases

Dr. Glenn Regehr
The K.Y. Ho Chair in Prostate Cancer Research

Dr. Michael Baker
The Dan Family Chair in Neurosurgery (to be appointed)

Dr. Fei-Fei Liu
The R. Fraser Elliott Chair in Cancer Research

Dr. Armand Keating
The Gloria & Seymour Epstein Chair in Cell Therapy & Transplantation

Dr. David Jaffray
The Orey and Mary Fidani Family Foundation Chair in Radiation Physics

Dr. John Trachtenberg
The K. Y. Ho Chair in Breast Surgical Oncology

Dr. Malcolm Moore
The K.Y. Ho Chair in Prostate Cancer Research

Dr. Michael Baker
The Charles H. Hollenberg Chair in Medicine at UHN

Dr. Abhijit Guha
The Alan & Susan Hudson Chair in Neuro-Oncology

Dr. Catherine Zahn
The Krembil Chair in Neurology

Dr. Gary Rodin
The Krembil Chair in Neurology

Dr. Norman Boyd
The Krembil Chair in Neuro-Oncology

Dr. Tirone David
The Melanie Munk Chair in Cardiovascular Surgery

Dr. Mark Minden
The Philip S. Orsino Chair in Leukemia Research

Dr. John Parker
The Pfizer Chair in Cardiovascular Research (to be appointed)

Dr. Drew Shearer
The Pfizer Chair in Cardiovascular Research (to be appointed)

Dr. John Trachtenberg
The Fleck/Tanenbaum Chair in Prostatic Diseases

Dr. Frances Shepherd
The Scott Taylor Chair in Lung Cancer Research (to be appointed)

Dr. Pat Gullane
The Robert E. Wharton Chair in Head & Neck Surgery

Dr. Peter Neligan
The Robert E. Wharton Chair in Reconstructive Plastic Surgery

Dr. Brian Golden
The Foundation Polo Chair in Neurosurgery (in Cerebrovascular Neurosurgery)

Dr. Chris Wallace
The Jack Clark Chair in Regenerative Medicine

Dr. Armand Keating
The Glenda & G. Whitmore Chair in Haematology and Gene Therapy Research

Dr. Frances Shepherd
The Scott Taylor Chair in Lung Cancer Research (to be appointed)

Dr. Alyx Jadad
The Smith & Nephew Chair in Orthopaedic Surgery Research

U of T Chairs held by UHN-Appointed Staff

Dr. Eric Stanley
The Anne and Max Tanenbaum Chair in Molecular Neurosciences

Dr. Chris Wallace
The Fondation Baxter and Alma Ricard Chair (in Cerebrovascular Neurosurgery)

Dr. Peter Liu
The Heart & Stroke Foundation Polo Chair in Cardiovascular Research

Dr. Anthony Lang
The Jack Clark Chair in Parkinson's Disease Research

Dr. Alex Jadad
The Smith & Nephew Chair in Supportive Care – Palliative Medicine
University Health Network’s International Research Advisory Board

The fourth annual IRAB meeting is scheduled for October 2005.

Victor Ling, PhD (Chair)
Vice-President, Research, BC Cancer Agency

Malcolm Pike, PhD
Professor, Department of Preventive Medicine, University of Southern California

Ferid Murad, MD, PhD
Nobel Prize winner and Director, Institute of Molecular Medicine, University of Texas

Hans Wigzell, MD, PhD
Professor, Microbiology and Tumor Biology Center, Karolinska Institute, Sweden

Mark Musen, MD, PhD
Head, Stanford Medical Informatics, Stanford University

(Photo not available)
Research at University Health Network

Ontario Cancer Institute
Princess Margaret Hospital
7th Floor, Room 7-504
610 University Avenue
Toronto, Ontario
Canada
M5G 2M9
416.946.2951
416.946.2287 (fax)

Toronto General Research Institute
Toronto General Hospital
Peter Munk Cardiac Centre
150 Gerrard Street - 4G505
Toronto, Ontario
Canada
M5G 2C4
416.340.4800 ext. 6333
416.340.4417 (fax)

Toronto Western Research Institute
Toronto Western Hospital
14th Floor Main Pavilion, Room 326
399 Bathurst Street
Toronto, Ontario
Canada
M5T 2S8
416.603.5873
416.603.5745 (fax)

www.uhnresearch.ca